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Scattering of a Plane Wave on a Ferrite Cylinder

at Normal Incidence*

W. EL EGGIiMANN~

Summary—The scattered field is given as a series of cylinder

functions. If the ferrite cylinder is magnetized along its axis the

scattering pattern becomes asymmetrical about the direction of

incidence. Approximation formulas for the thin cylinder and the far

field zone are given. It is shown that in the first approximation the

amplitude is an even function and the phase angle of the field is an

odd function of the scattering angle. Exact numerical results have

been obtained with a Univac digital computer. By a suitable ar-

rangement of the ferrite cylinders, a unidirectional pattern can be

obtained which is controlled by the applied magnetic dc field.

IivTRODUcT1ON

T

HE scattering of a plane wave on a dielectric

cylinder has been discussed in a number of papers.

The complete solution for arbitrary incidence has

been given by Wait. 1 He also discussed approximate

solutions for the far field zone and the case of a cylinder

whose diameter is small compared with the wavelength.

In this paper the scattering of a plane wave from a

homogeneous ferrite cylinder is investigated. The dis-

cussion is restricted to the case of normal incidence, for

which an exact solution in form of a series of Bessel func-

tions can be found. The ferrite rod is magnetized along

its axis. Because of the nonreciprocal properties of the

ferrite lmaterial, a nonsymmetrical distribution of the

scattered field with respect to the direction of incidence

is to be expected. The scattered field is a function of the

permeability tensor of the ferrite, which in turn depends

on the applied magnetic dc field. It is, therefore, possi-

ble to control the scattering pattern of the ferrite cylin-

der by the magnetic field.

THE hfATHEMATICAL SOLUTION

An infinitely long ferrite cylinder with its axis along

the z direction is considered. A dc magnetic field is

applied along its axis. A plane wave is incident in the

positive x direction. With these assumptions the prob-

lem is reduced to two dimensions in the x-y plane. The

polarization of the wave is arbitrary. The field cali then

be decomposed in two waves, one which is polarized

normal to the cylinder axis (E= E.ti) and one which is

polarized parallel to it (E= E.,) (see Fig. 1). In the first

case the magnetic field of the wave is parallel to the axis

and to the applied magnetic dc field and, therefore, no

nonreciprocal interaction between the field and the mag-

* Received by the PGMTT, January 4, 1960; revised manuscript
received, February 23, 1960.
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‘ J. R. Wait, “Scattering of a plane wave from a circular dielec-
tric cylinder at oblique incidence, ” Can. ~. Phys., vol. 33, pp. 189–
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Fi~. l—Plane wave incident normallv on a
circular ferrite cylinder. ‘

netization of the ferrite takes place. Hence the tensor

permeability reduces to a scalar. In other words the

problem is the same as the one for a dielectric cylinder. 1

For the wave polarized parallel to the z axis, however,

the magnetic dc and ac fields are normal to each other,

so that the ac field interacts with the processing mag-

netic dipoles of the ferrite. In this case one has to use

the tensor permeabilities in Maxwell’s equations,

(la)
dD

curl H = ~ = jc.JD = jueE,

c3B
curl E= — ~= —jwB= —jw,c. H. (lb)

Because there is no variation in the z. direction, (lb) can

be replaced by the two-dimensional tensor equation

where V is the two-dimensional symbolic gradient. Thus

the magnetic field His in free space
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The permeability tensor P can be calculated from the

simple model of the processing magnetic dipole moment

of the electron in a magnetic field.2 one obtains in two

dimensions

(5)

where the two components p and k are given by

-y2/.LoHoB, — W2

P= iJo (6)
~2p02H02 _ W2

and

@’/.loM.
k=po (7)

~2p02H02 _ ~2 ‘

where B. =PO(HO+M.) and -Y= gyromagnetic ratio of

the electron spin. From (5) the reciprocal tensor perme-

ability can be calculated

(p)-, = 1

()

~ jk

Z_k~ –j~ ~ “

Combining (4) and (8),

ju:-k( )
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This gives in Cartesian coordinates

1

(

dE; aE.
Hz=— jkx–wy;

ju(pz – k’) “ )

1
.Hg=

(z_k2 P:E2+jk%jm(p ) 13.Y )dy ‘

and in cylindrical coordinates

1
H, =

(
k :::+jp::

w(P2—~2 ) )

1

(

13EZ 1 8E.
H+ = —jp —— –k——

U(pz — /$2) d?’ Y dql )

INCIDENT FIELD

(8)

(9)

(lOa)

(lOb)

(ha)

(Ilb)

In order to apply the boundary conditions (continuity

of the tangential electric and magnetic field at Y = a) it

is necessary to express the incoming plane wave in

cylindrical coordinates. This can be done in terms of a

series of Bessel functions3

z C. L. Hogan, “The microwa~,e g>-rater, ” Bell Sys. TPC?L J., vol.
31, pp. 1–31; ~anuar~,, 1952.

—.

a J. H. Stratton, ‘(Electromagnetic Theory, ” McGraw-Hill Book
Co., Inc., New York, N. Y., p. 372; 1941.

Ezinc ~ EoeI (Wf–fl.) = Eoei(. t–pv..s +)

= Eoej. t
i (.lln~?(flf’)e-’”. (12)

,,=—cc

The magnetic field is given by (11) when p =p” and k = O.

All derivatives are with respect to the argument&.

SCATTERED FIELD

For the scattered field a similar representation is

chosen. Here the Hankel functions of the second kind

have to be used, because the asymptotic approximation

for large arguments give a decreasing ouitgoing wave.

Ea6cat = ~ a,t’lzn(’)(p?’)e-~’$ (14)
7,=—W

Hti,cdt .@ w— x a,:Hn’’’’(&W+-W+ (15b)
@&o IL=-cc

INSIDE FIELD

Inside the ferrite the field k represented by Bessel

functions of the first kind.

E, = jj a..l. (f12r) e–i”+ (16)
.=—X

1
H, =

[
k/32 f anJn’(/3,r) e-]”+

2_~2
W(P ) n=–rx

(17a)

1+3 s a~J.(/32r)~e-’”4 . (17b)
r ,,=–m

It can be shown that in the ferrite material the wave

number is given by

pz’ = (.ALeff. c,

where

1.L2– kz
/Jeff = — “

B

In (13) to (17) the harmonic time

omitted.

(1$)

(19)

dependence e’”’ is
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BOUNDARY CONDITIONS B. Far Field A +Proximation, ,6Y>>I

Continuity of the tangential electric and magnetic Here the asymptotic approximation

field requires function with large argument is used

E9~nC + E=SCzt = E= at r = a (20) /=7

(27)

for the Hankel

. .

Hdinc + H+””t = H+ at Y = a.

Substituting (12) to (17) in (20) and (21) and eliminat- where K“(z) (z) is given by this eauation. Combining
ing am yields

Dn(fha) J.’ (Pa)

.l.(l%a) – .l.(i?ii
a.’ = — EO(j)n

D~(&a) H~/ (’)(@a)

J.(PNz) – H.(2) (Pa)

where

[
D.(p,a) = ; ~ J~’(b’a) + A

P

For k~O, the permeability tensor p reduces to a scalar The coefficients Cfn can be expressed in terms of cylin-

and one obtains the case of the dielectric cylinder. I der functions of positive order,

[

~;[2(1i~)- ?~~j)l-;+ ’28 ‘ Jn(Da)
c*. = +j

1%[:(1’3-:;:;)1 -;+%% ‘net”

(14), (22), and (28) gives -

Jn(/?a)
[

Egs = j~o(z)(~t’) 60 + ~ (– I)”(c–. + cn) COS @

, (22) 11=1
Hn(’) (Pa)

+ j(c_n – 1c,,) sin n+ , (29)

1

where
: J~(/3,a) . (23)

C*. = – (j)’-%.’. (30)

(31)

APPROXIMATION FORMULAS

A. Thin Cylinder, l?a<<l, ,&a<<l

It is assumed that the wavelength is much larger than

the radius of the cylinder. Then the cylinder functions

can be expanded in power series and by keeping only the

the first terms (22) becomes

1
aO’=— —

()
~ 7r(@a)2 3 — 1 EOj

~o (24)

For the dielectric case (k= O),

an” = — a_m8. (26)

In the first approximation all terms except the ones

with n = O, f 1 can be neglected,

For the dielectric case one obtains cm= c–m and’ the sine

term in (29) vanishes. This results in a symmetrical pat-

tern with respect to ~ = O. If the approximation for the

thin cylinder is used, (25) and (30) yield

so that the c~~’s are real. It can be easily shown that

the amplitude of Ez(r, +) is an even function of @. In

order to obtain an asymmetrical pattern the Cf.’s have

to be complex, that is, the second-order approximations

of the cylinder functions have to be taken in (22). Hence,

an almost symmetrical pattern of the field strength for

a cylinder for which a<<l/(& = h2/27r is to be expected.

In the X-band region the wavelength is about 3 cm in

free space and 1 cm in ferrite. That requires <<1.5 mm.
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It is interesting to note, however, that the phase angle

0 of the field is an odd function of the scattering angle@

in the thin cylinder approximation. From (29) one

obtains

~>1 (–)”(6-.. – c.) sin@

tan O =
.

co + ~ (— I)”(c_,L + c.) Coso
,,=1

()

MO 2k
— — sin @
&eff P

@—
a sin @

. —,—

[(:)(l+(;Y)-’lcOs’-+ (l)[(ti+lY1(::YIYl ““’’-”

where a, b, and c are defined by this equation. The

maximum phase difference is given by d/d@(tan 0) = O,

which yields a deflection angle

&ax = Cos–1 -! . (34)
c

NUMERICAL EVALUATION

Eq. (33) shows that the phase angle of the scattered

wave does not depend on the wavelength or the cylinder

radius in the first approximation for the thin cylinder.

To get an idea of the order of magnitude of phaseshift,

let us consider some typical values for the parameters

pO/p,ff and q’Eo.
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Fig. 2—Phase angle 8 of scattered wave as a function of scattering
angle g+ for thin cylinder far field apprommation. (a) k/p= 1;
(b) k/y=l.5; (c) k/W=l.8; (d) k/p=2; (e) k/~=2.5.

—

Then (33) becomes

k
— sin +

Fig. 2 gives O(O) for various values of k/p. IFor small and

large values of k/p the largest phaseshift is at a deflec-

tion angle q5w90°. For values 1.83 <k/p.< 2.24, where

tan O becomes infinite at certain deflection angles, the

phase angle O is steadily increasing in the positive direc-

tion of d resulting in a spiral wave (Fig. 3). This result

can be explained by means of the processing magnetic

dipoles. From (33) it can be seen that for a nondielectric

cylinder (e/e. = 1) the scattered wave is spiral for all

values of the magnetic field (e.g. for all values of

k/p# O). For high values of e/eO and low values of k/N,

however, the dielectric properties of the ferrite are pre-

dominant, and the spiral wave is ‘(covered up” by the

wave scattered on a dielectric cylinder.

Y

x
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i
Fig. 3—Spiral wave scatt:red from thin cylinder. The spiral

represents a lme of constant phase.
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Fig. 4—Amplitude (Es=t)z of scattered electric field as a function of
scattering angle @ (a) (3a=0.475, (3YJ= 1.42, a = 2.5. 10–%,
k/,a=O.5, &=20. (b) @a= O.475, (3,a=l.42, a=2.5.10-Jm, k/p
=3, flr=20. (c) 8a=0.475, &a=3.80, a=5.0.10-3tn, k/W=3,
&’=20. (d) &z= O.475, /3,a= 1.42, a=2.5. 10-3m, k/P= 0.25, PY
=20. (e) fla=O.475, (3za=2.85, a=2.5. 10-39n, k/P= 0.25, &=20.
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Fig. 5—Phase angle @of scattered electric field as a function of scat-
tering angle +. (a) /3a= 0.475, fl,a= 1.42, a=2.5. 10%z, k/.a=O.5,
/3r=20. (b) fla=O.4?5, &a=l.42, a=2.510-’m, k/P=3, &=20.
(c) /3a= 0.475, @za=3.80, a=5.O 10-3713, k/W=3, @=20. (d)
@a= O.475, fka= 1.42, a=2.5. 10-3w, k/p= O.25, &’=20. (e)
pa= O.475, p,a=2.85, a=2.510-3m, k/P=0.25, &=20.
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Fig. 6—Circular arrangement of six ferrite cylinders (F) around an

antenna (A). The waves scattered from the cylinders are in phase
with the incident wave from the antenna in the desired direction
and 180° out of phase in the opposite direction.
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Numerical calculations of (14) have been carried out

on a Univac computer. In order to simplify the pro-

gramming, the derivatives of cylinder functions and

cylinder functions of negative order have been replaced

by c~-linder functions of positive order [see (3 I) ].

The amplitude and phase of the electric field have

been plotted in Figs. 4 and 5. For certain values of the

parameters, a, k/LL, ~Z this exact solution yields also a

spiral wave. It is interesting to note that except for high

values of k/K either the amplitude or the phase of the

electric field is an odd function of the scattering angle O,

so that the scattered field is alwa~-s asymmetrical.

DISCUSSION .AND CONCLtTSICINS

The foregoing discussion shows that the scattered

field from a ferrite cylinder is in most cases asymmetri-

cal about the direction of incidence. The direction of

maximum field strength depends on the dc magnetiza-

tion of the ferrite. By a suitable arrangement of several

cylinders, as shown in Fig. 6, the scattered field can be

concentrated in one direction. Here the phases of the

scattered waves are in phase with the incident wave in

the desired direction and 180° out of phase in the oppo-

site direction. With a cyclic application of the magnetic

dc field the field pattern is rotated. In order to distort

the field as little as possible under this rctation a large

number of scatterers should be used.

Because of the abrupt phase change for certain values

of the deflection angle, it seems possiblle to obtain a

narrow beam of a few degrees. The large variations of

the amplitude, however, will result in strong sidelobes.

For the design of such an antenna the !Scatteringpat.

tern of the ferrite cylinder has to be measured. Then the

time function of the magnetic dc field, which gives the

desired antenna pattern, has to be determined.

The advantage of such an electronic scanning antenna

is the lack of mechanical parts and the weightless rota-

tion which allows much higher scannin{g speeds than

with a mechanical system.
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Phase Adjustment Effects on Cascaded Reflex

Klystron Amplifiers*

KORYU ISHII~, MEMBER, IRE

Summary—Reflex klystrons (type 2K25) were used as regenera-

tive amplifiers for the X-band. Two 2K25 reflex klystron amplifiers

were cascaded with a coupling circuit which contained a variable

phase shifter. The effect of the phase adjustment was investigated

in comparison with another coupling scheme which did not contain

the phase shifter. The phase adjustment in the coupling circuit gave

the amplbier system high gain (more than 50 db max.), and a

reasonably low noise figure (8 db-17.5 db). High sensitivity was ob-

tained. Proper phase adjustment of the two stage reflex klystron

amplbier could give more than twice the gain in db of the single. stage

amplifier because of the regenerative feedback between stages. The

linearity and dynamic range were considerably improved by the

phase adjustment. But the frequency bandwidth became narrow

(2 me), and improvement in stability and directivity was not sig-

nmcant.

* Received by the PGMTT, February 3, 1960; revised manu-
script received, .~pril 1~, 1960. A part of this original work was done
while the author was with the Dept. of Electrical Engineering, Uni-
versity of Wisconsin, Madison, W’is.; supported by the University
Research Committee.

t Marquette University, Milwaukee, PYis.

INTRODUCTION

x

T has been shown that ordinary reflex klystrons are

usable as microwave regenerative amplifiers.l–” In

order to obtain high gain, it is natural to think

about cascading the reflex klystron amplifiers. This is,

however, a rather complicated problem, because a part

of the amplified power reflects back and forth betvveen

1 K. Ishii,. “ .Y-band receiviug amplifier, ” Electronics, vol. 28, pp.
202–210; Aprd, 1955.

j K. Ishii, “Oneway circuit by the use of a hybrid T for the reflex
klystron amplifier, ” PROC. IRE, vol. 45, p. 687; May, 1957.

8 C. F. Quate, R. Kompfner, and D. A. Chisholm ‘{Th,e reflex
klystron as a negative resistance type amplifier, ” IRE TRANS. ON

ELECTRON DEVICW, vol. ED-5, pp. 173–179; July, 1958.
4 K. Ishii, ‘(Impedance adj rrstment effects on reflex klystron am-

plifier uoise, ” ilfzcrowaw Journal, vol. 2, pp. 43–46; December, 1959.
5 K. Ishii, “Reflex klystron as receiver amphfiers,” Electronics,

vol. 33, pp. 56–57, January 8, 1960.
c K. Ishii, “Using reflex klystrons as millimeter-wave amplifiers. ”

Electronics, vol. 33, pp. 71-73; March 18, 1960.


